CMSC201
Computer Science | for Majors

Lecture 12 —
Program Desigh and Modularity

All materials copyright UMBC unless otherwise noted www.umbc.edu

Last Class We Covered

* Functions

— Returning values

—Matching parameters

— Matching return assignments
* Mutability

— Immutability
— Effect on functions

2 www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Today’s Objectives

* To understand shallow copy

* To practice program design
— With the max of three example

* To better understand the purpose of modularity,
functions, and incremental development

— Through a design example

4 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Review: Mutability in Functions

Function is called, and formal parameter B
is assigned the actual parameter A

A is mutable A is immutable
(lists, or dicts) (int, string, tuple)

B is modified B is assigned to rd ' ch
in place something else]cc)esnht change
B.append (2) B = [0, 1] It B changes
A changes A doesn’t change
If B changes If B changes

5 From http://stackoverflow.com/a/25670170 WWW-UmbC.edU

Shallow (and Deep) Copies

6 www.umbc.edu

Copying Lists

 When you assign one list to another, it is by
default a “shallow” copy of the list

* A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

* A deep copy is the opposite, creating an
entirely new list for the new variable

— This is what you probably want to be happening!

7 www.umbc.edu

Shallow Copy

* When we make a shallow copy, we are
essentially just giving the same list two
different variable names

— This only happens to mutable data types,
like lists, and only if we alter them in-place

listl

$ 1) (1) (1) 1)
49_[red", "blue"]

list2

8 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Shallow Copy Example

* A shallow copy and its effects on the original:

listl = ["red", "blue"] # original list

list2 = 1listl

shallow copy made

list2.append('"green') # update shallow copy
list2[1] = "yellow" # and again
print("listl (end): ", listl)

print("list2 (end): ", list2)

listl (start):
listl (end):
list2 (end):

['red', 'blue']
['red', 'yellow', 'green']
['red', 'yellow', 'green']

www.umbc.edu

Deep Copy

* There are two easy ways to do a deep copy:

— Use slicing, and “slice” out the entire list

— Cast the original as a list when assigning

* With these, Python returns an entirely new list
that you can then assigned to the new variable

—Now you have two separate lists!

10 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

11

Deep Copy Example

listl = ["red", "blue"]
list2 = listl][:]

use slicing to copy

list2[1] = "yellow"

list3 = list(listl) # use casting to copy
list3.append("purple")

print ("original: ", listl)

print (""deep copyl: ", list2)

print ("deep copy2: ", list3)

original: ['red', 'blue']

deep copyl: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']

www.umbc.edu

Deep Copy

* Creates a copy of the entire list’s contents, not
just of the list itself

e Each variable now has its own individual list

llStl > :nredn , nbluen]
1lSt2) :nredvv , nyellowll]
llSt3 > :"red" , "blue" , "purple"]

12 www.umbc.edu

Program Design Example

13 www.umbc.edu

Study in Design: Max of Three

* You know about a lot of tools at this point in
the semester, but knowing when and how to
apply them may still be difficult sometimes

e Let’s create an algorithm to find
the largest of three numbers

e Start off by writing the code to get the input
from the user, and to print the final maximum

14 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Max of Three: Code Framework

* Here’s the “easy” part of our code completed:

def main() :

x1 = int(input("Please enter a value: "))
x2 = int(input("Please enter a value: "))
x3 = int(input("Please enter a value: "))

we need to write the missing code that sets
"maximum" to the value of the largest number

print ("The largest value is ", maximum)

main ()

15 www.umbc.edu

Max of Three: Strategies

e Spend a few minutes thinking about the
different ways you could compare these three
numbers to find the maximum

 Don’t write code right away — brainstorm first!

* Your first idea might not be your best idea,
so be prepared to be flexible

16 www.umbc.edu

17

Strategy 1: Compare Each to All

* This looks like a three-way decision, where we
need to execute one of the following:

maximum = x1
maximum X2
maximum x3

 What we need to do now is preface each
one of these with the right condition

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Strategy 1: Solution

* Here’s our completed code:

def main():
getting input goes here
if x1 >= x2 and x1 >= x3:
maximum = x1
elif x2 >= x1 and x2 >= x3:
maximum = x2
else:

maximum = x3

print ("The largest value is ", maximum)
main ()

18

www.umbc.edu

Strategy 1: Downsides

 What would happen if we were trying to find
the max of five values?

— We would need four Boolean expressions, each
consisting of four conditions and’ed together

 What about twenty values?

— We would need nineteen Boolean expressions,
with nineteen conditions each

* There has to be a better way!

19 www.umbc.edu

Strategy 2: Decision Tree

e We can avoid the redundant tests of the
previous algorithm by using a decision tree

e Suppose we start with checking if x1 >= x2

— This knocks either x1 or x2 out of the
running to be the maximum value

— If the condition is True, then we move on to
check whether x1 or x3 is larger

20 www.umbc.edu

Strategy 2: Decision Tree Flowchart

(Start)ﬁ/Getthe3numbers/
TRUE 4& FALSE

\/

TRUE FALSE TRUE FALSE

maximum = x1 maximum = x3 maximum = x2 maximum = x3

e)

21 www.umbc.edu

Strategy 2: Decision Tree Code

* Here’s the code for the previous flowchart

if x1 >= x2:

if x1 >= x3:

maximum
else:

maximum
else:

if x2 >= x3:

maximum
else:

maximum

22

x1

x3

X2

x3

www.umbc.edu

Strategy 2: (Dis)advantages

* This approach makes exactly two
comparisons between the three variables

* However, this approach is more complicated
than the first

— To find the max of four values you’d need
if-elses nested three levels deep with

eight assighment statements
— This isn’t much better than the last method!
23

www.umbc.edu

Strategy 3: Sequential Processing

* How would you solve the problem?

* Since you’'re not a computer, you could look at

three numbers and know which is the largest
— But what if there were one hundred numbers?

* One strategy is to scan the list for a big number
— When one is found, mark it, and continue looking
— If you find a larger value, mark it, erase the
previous mark, and continue looking

www.umbc.edu

24

Strategy 3: Sequential Processing

ﬁet the 3 numbers/@ maximum = x1

C Start)

TRUE

X2 > maximum

!

maximum = x2

TRUE

X3 > maximum

!

maximum = x3

25 www.umbc.edu

Strategy 3: Sequential Processing Code

* This idea can be easily done in Python code

maximum = x1

if x2 >= maximum: Why do we use two
if statements?

maximum = X2

if x3 >= maximum:
maximum = x3 What would happen if we used
an if-elif statement?

26 www.umbc.edu

Strategy 3: Sequential Processing

* This process is pretty repetitive
—Which means we could use a loop!

 We would repeat the following steps:
1. Prompt the user for a number
2. Compare it to the current maximum
3. Ifitis larger, update the max value

— Repeat until the user is done entering numbers

* Or combine it with a list of given numbers

27 www.umbc.edu

Strategy 4: Take Advantage of Python

* Python has a built-in function called max
— It takes in numbers and returns the max value

def main():
getting input goes here
maximum = max(xl, x2, x3)
print ("The largest value is ", maximum)

main ()

— This is why we called our variable “maximum”
instead of max — because max is already defined!

28 www.umbc.edu

Modularity

29 www.umbc.edu

Modularity

* A program being modular means that it is:

 Made up of individual pieces (modules)
— That can be changed or replaced
— Without affecting the rest of the system

* So if we replace or change one function, the
rest should still work, even after the change

30 www.umbc.edu

Modularity

* With modularity, you can also reuse
and repurpose your code

 What are some pieces of code you've
had to write multiple times?

— Getting input between some min and max

— Using a sentinel loop to create a list
— What else?

31

www.umbc.edu

Functions and Program Structure

e So far, functions have been used as a
mechanism for reducing code duplication

e Another reason to use functions is to make
your programs more modular

* As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs

32 www.umbc.edu

Functions and Program Structure

* One option to handle this complexity is to
break it down into smaller pieces

* Each piece makes sense on their own

* You can easily combine them together to form
the complete program

www.umbc.edu

Program Design Example

34 www.umbc.edu

Vending Machine

 We want to write a program that simulates a
vending machine

* How do we even start!?

* With questions:

— What things do we want our
program to be able to do?

— What info does it need?

— How will we store data?

35 Image from wikimedia.org www.umbc.edu

36

Announcements

Homework 5 is/was due Wednesday

Homework 6 does not come out this week
— It will come out the night of October 20th

The midterm exam is when?
— During class on October 19th and 20th!

Review packets will be available
in class on October 17th and 18th

www.umbc.edu

