CMSC201
Computer Science | for Majors

Lecture 12 —
Program Desigh and Modularity

All materials copyright UMBC unless otherwise noted www.umbc.edu



Last Class We Covered

* Functions

— Returning values

—Matching parameters

— Matching return assignments
* Mutability

— Immutability
— Effect on functions
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Any Questions from Last Time?
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Today’s Objectives

* To understand shallow copy

* To practice program design
— With the max of three example

* To better understand the purpose of modularity,
functions, and incremental development

— Through a design example
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Review: Mutability in Functions

Function is called, and formal parameter B
is assigned the actual parameter A

A is mutable A is immutable
(lists, or dicts) (int, string, tuple)

B is modified B is assigned to rd ' ch
in place something else ]cc)esnht change
B.append (2) B = [0, 1] It B changes
A changes A doesn’t change
If B changes If B changes
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Shallow (and Deep) Copies
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Copying Lists

 When you assign one list to another, it is by
default a “shallow” copy of the list

* A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

* A deep copy is the opposite, creating an
entirely new list for the new variable

— This is what you probably want to be happening!
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Shallow Copy

* When we make a shallow copy, we are
essentially just giving the same list two
different variable names

— This only happens to mutable data types,
like lists, and only if we alter them in-place

listl

$ 1) (1) (1) 1)
49_[ red", "blue"]

list2
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Shallow Copy Example

* A shallow copy and its effects on the original:

listl = ["red", "blue"] # original list

list2 = 1listl

# shallow copy made

list2.append('"green') # update shallow copy
list2[1] = "yellow" # and again
print("listl (end): ", listl)

print("list2 (end): ", list2)

listl (start):
listl (end):
list2 (end):

['red', 'blue']
['red', 'yellow', 'green']
['red', 'yellow', 'green']
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Deep Copy

* There are two easy ways to do a deep copy:

— Use slicing, and “slice” out the entire list

— Cast the original as a list when assigning

* With these, Python returns an entirely new list
that you can then assigned to the new variable

—Now you have two separate lists!
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Deep Copy Example

listl = ["red", "blue"]
list2 = listl][:]

# use slicing to copy

list2[1] = "yellow"

list3 = list(listl) # use casting to copy
list3.append("purple")

print ("original: ", listl)

print (""deep copyl: ", list2)

print ("deep copy2: ", list3)

original: ['red', 'blue']

deep copyl: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']
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Deep Copy

* Creates a copy of the entire list’s contents, not
just of the list itself

e Each variable now has its own individual list

llStl > :nredn , nbluen]
1lSt2 ) :nredvv , nyellowll]
llSt3 > :"red" , "blue" , "purple"]
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Program Design Example
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Study in Design: Max of Three

* You know about a lot of tools at this point in
the semester, but knowing when and how to
apply them may still be difficult sometimes

e Let’s create an algorithm to find
the largest of three numbers

e Start off by writing the code to get the input
from the user, and to print the final maximum
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Max of Three: Code Framework

* Here’s the “easy” part of our code completed:

def main() :

x1 = int(input("Please enter a value: "))
x2 = int(input("Please enter a value: "))
x3 = int(input("Please enter a value: "))

# we need to write the missing code that sets
# "maximum" to the value of the largest number

print ("The largest value is ", maximum)

main ()
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Max of Three: Strategies

e Spend a few minutes thinking about the
different ways you could compare these three
numbers to find the maximum

 Don’t write code right away — brainstorm first!

* Your first idea might not be your best idea,
so be prepared to be flexible
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Strategy 1: Compare Each to All

* This looks like a three-way decision, where we
need to execute one of the following:

maximum = x1
maximum X2
maximum x3

 What we need to do now is preface each
one of these with the right condition
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Strategy 1: Solution

* Here’s our completed code:

def main():
# getting input goes here
if x1 >= x2 and x1 >= x3:
maximum = x1
elif x2 >= x1 and x2 >= x3:
maximum = x2
else:

maximum = x3

print ("The largest value is ", maximum)
main ()
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Strategy 1: Downsides

 What would happen if we were trying to find
the max of five values?

— We would need four Boolean expressions, each
consisting of four conditions and’ed together

 What about twenty values?

— We would need nineteen Boolean expressions,
with nineteen conditions each

* There has to be a better way!
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Strategy 2: Decision Tree

e We can avoid the redundant tests of the
previous algorithm by using a decision tree

e Suppose we start with checking if x1 >= x2

— This knocks either x1 or x2 out of the
running to be the maximum value

— If the condition is True, then we move on to
check whether x1 or x3 is larger
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Strategy 2: Decision Tree Flowchart

( Start )ﬁ/Getthe3numbers/
TRUE 4& FALSE

\/

TRUE FALSE TRUE FALSE

maximum = x1 maximum = x3 maximum = x2 maximum = x3

e )
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Strategy 2: Decision Tree Code

* Here’s the code for the previous flowchart

if x1 >= x2:

if x1 >= x3:

maximum
else:

maximum
else:

if x2 >= x3:

maximum
else:

maximum

22

x1

x3

X2

x3
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Strategy 2: (Dis)advantages

* This approach makes exactly two
comparisons between the three variables

* However, this approach is more complicated
than the first

— To find the max of four values you’d need
if-elses nested three levels deep with

eight assighment statements
— This isn’t much better than the last method!
23
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Strategy 3: Sequential Processing

* How would you solve the problem?

* Since you’'re not a computer, you could look at

three numbers and know which is the largest
— But what if there were one hundred numbers?

* One strategy is to scan the list for a big number
— When one is found, mark it, and continue looking
— If you find a larger value, mark it, erase the
previous mark, and continue looking

www.umbc.edu
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Strategy 3: Sequential Processing

ﬁet the 3 numbers/@ maximum = x1

C Start )

TRUE

X2 > maximum

!

maximum = x2

TRUE

X3 > maximum

!

maximum = x3
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Strategy 3: Sequential Processing Code

* This idea can be easily done in Python code

maximum = x1

if x2 >= maximum: Why do we use two
if statements?

maximum = X2

if x3 >= maximum:
maximum = x3 What would happen if we used
an if-elif statement?
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Strategy 3: Sequential Processing

* This process is pretty repetitive
—Which means we could use a loop!

 We would repeat the following steps:
1. Prompt the user for a number
2. Compare it to the current maximum
3. Ifitis larger, update the max value

— Repeat until the user is done entering numbers

* Or combine it with a list of given numbers
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Strategy 4: Take Advantage of Python

* Python has a built-in function called max
— It takes in numbers and returns the max value

def main():
# getting input goes here
maximum = max(xl, x2, x3)
print ("The largest value is ", maximum)

main ()

— This is why we called our variable “maximum”
instead of max — because max is already defined!
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Modularity
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Modularity

* A program being modular means that it is:

 Made up of individual pieces (modules)
— That can be changed or replaced
— Without affecting the rest of the system

* So if we replace or change one function, the
rest should still work, even after the change
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Modularity

* With modularity, you can also reuse
and repurpose your code

 What are some pieces of code you've
had to write multiple times?

— Getting input between some min and max

— Using a sentinel loop to create a list
— What else?
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Functions and Program Structure

e So far, functions have been used as a
mechanism for reducing code duplication

e Another reason to use functions is to make
your programs more modular

* As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs
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Functions and Program Structure

* One option to handle this complexity is to
break it down into smaller pieces

* Each piece makes sense on their own

* You can easily combine them together to form
the complete program
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Program Design Example
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Vending Machine

 We want to write a program that simulates a
vending machine

* How do we even start!?

* With questions:

— What things do we want our
program to be able to do?

— What info does it need?

— How will we store data?
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Announcements

Homework 5 is/was due Wednesday

Homework 6 does not come out this week
— It will come out the night of October 20th

The midterm exam is when?
— During class on October 19th and 20th!

Review packets will be available
in class on October 17th and 18th
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