
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 12 –
Program Design and Modularity

www.umbc.edu

Last Class We Covered

• Functions

–Returning values

–Matching parameters

–Matching return assignments

• Mutability

– Immutability

– Effect on functions

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To understand shallow copy

• To practice program design

–With the max of three example

• To better understand the purpose of modularity,
functions, and incremental development

– Through a design example

4

www.umbc.edu

?

??

Review: Mutability in Functions

5 From http://stackoverflow.com/a/25670170

Function is called, and formal parameter B
is assigned the actual parameter A

A is immutable
(int, string, tuple)

A is mutable
(lists, or dicts)

A doesn’t change
If B changes

B is assigned to
something else
B = [0, 1]

B is modified
in place

B.append(2)

A doesn’t change
If B changes

A changes
If B changes

www.umbc.edu6

Shallow (and Deep) Copies

www.umbc.edu

Copying Lists

• When you assign one list to another, it is by
default a “shallow” copy of the list

• A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

• A deep copy is the opposite, creating an
entirely new list for the new variable

– This is what you probably want to be happening!

7

www.umbc.edu

Shallow Copy

• When we make a shallow copy, we are
essentially just giving the same list two
different variable names

– This only happens to mutable data types ,
like lists, and only if we alter them in-place

8

list1

list2

["red", "blue"]

www.umbc.edu

Shallow Copy Example

• A shallow copy and its effects on the original:

list1 = ["red", "blue"] # original list

list2 = list1 # shallow copy made

list2.append("green") # update shallow copy

list2[1] = "yellow" # and again

print("list1 (end): ", list1)

print("list2 (end): ", list2)

9

list1 (start): ['red', 'blue']

list1 (end): ['red', 'yellow', 'green']

list2 (end): ['red', 'yellow', 'green']

www.umbc.edu

Deep Copy

• There are two easy ways to do a deep copy:

– Use slicing, and “slice” out the entire list

– Cast the original as a list when assigning

• With these, Python returns an entirely new list
that you can then assigned to the new variable

–Now you have two separate lists!

10

www.umbc.edu

Deep Copy Example
list1 = ["red", "blue"]

list2 = list1[:] # use slicing to copy

list2[1] = "yellow"

list3 = list(list1) # use casting to copy

list3.append("purple")

print("original: ", list1)

print("deep copy1: ", list2)

print("deep copy2: ", list3)

11

original: ['red', 'blue']

deep copy1: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']

www.umbc.edu

Deep Copy

• Creates a copy of the entire list’s contents, not
just of the list itself

• Each variable now has its own individual list

12

list1

list2

["red", "blue"]

["red", "yellow"]

["red", "blue", "purple"]list3

www.umbc.edu13

Program Design Example

www.umbc.edu

Study in Design: Max of Three

• You know about a lot of tools at this point in
the semester, but knowing when and how to
apply them may still be difficult sometimes

• Let’s create an algorithm to find
the largest of three numbers

• Start off by writing the code to get the input
from the user, and to print the final maximum

14

www.umbc.edu

Max of Three: Code Framework

• Here’s the “easy” part of our code completed:

def main():

x1 = int(input("Please enter a value: "))

x2 = int(input("Please enter a value: "))

x3 = int(input("Please enter a value: "))

we need to write the missing code that sets

"maximum" to the value of the largest number

print("The largest value is ", maximum)

main()

15

www.umbc.edu

Max of Three: Strategies

• Spend a few minutes thinking about the
different ways you could compare these three
numbers to find the maximum

• Don’t write code right away – brainstorm first!

• Your first idea might not be your best idea,
so be prepared to be flexible

16

www.umbc.edu

Strategy 1: Compare Each to All

• This looks like a three-way decision, where we
need to execute one of the following:

maximum = x1

maximum = x2

maximum = x3

• What we need to do now is preface each
one of these with the right condition

17

www.umbc.edu

Strategy 1: Solution

• Here’s our completed code:
def main():

getting input goes here

if x1 >= x2 and x1 >= x3:

maximum = x1

elif x2 >= x1 and x2 >= x3:

maximum = x2

else:

maximum = x3

print("The largest value is ", maximum)

main()

18

www.umbc.edu

Strategy 1: Downsides

• What would happen if we were trying to find
the max of five values?

– We would need four Boolean expressions, each
consisting of four conditions and’ed together

• What about twenty values?

– We would need nineteen Boolean expressions,
with nineteen conditions each

• There has to be a better way!

19

www.umbc.edu

Strategy 2: Decision Tree

• We can avoid the redundant tests of the
previous algorithm by using a decision tree

• Suppose we start with checking if x1 >= x2

– This knocks either x1 or x2 out of the
running to be the maximum value

– If the condition is True, then we move on to
check whether x1 or x3 is larger

20

www.umbc.edu

FALSETRUE TRUE

FALSETRUE

Strategy 2: Decision Tree Flowchart

21

Start

x1 >= x2

FALSE
x1 >= x3 x2 >= x3

maximum = x3maximum = x1 maximum = x3maximum = x2

End

Get the 3 numbers

www.umbc.edu

Strategy 2: Decision Tree Code

• Here’s the code for the previous flowchart
if x1 >= x2:

if x1 >= x3:

maximum = x1

else:

maximum = x3

else:

if x2 >= x3:

maximum = x2

else:

maximum = x3

22

www.umbc.edu

Strategy 2: (Dis)advantages

• This approach makes exactly two
comparisons between the three variables

• However, this approach is more complicated
than the first

– To find the max of four values you’d need
if-elses nested three levels deep with
eight assignment statements

– This isn’t much better than the last method!

23

www.umbc.edu

Strategy 3: Sequential Processing

• How would you solve the problem?

• Since you’re not a computer, you could look at
three numbers and know which is the largest
– But what if there were one hundred numbers?

• One strategy is to scan the list for a big number
– When one is found, mark it, and continue looking
– If you find a larger value, mark it, erase the

previous mark, and continue looking

24

www.umbc.edu

Strategy 3: Sequential Processing

25

Start

maximum = x1

x2 > maximum

FALSE

TRUE

maximum = x2

x3 > maximum

FALSE

TRUE

maximum = x3

End

Get the 3 numbers

www.umbc.edu

Strategy 3: Sequential Processing Code

• This idea can be easily done in Python code

maximum = x1

if x2 >= maximum:

maximum = x2

if x3 >= maximum:

maximum = x3

26

Why do we use two
if statements?

What would happen if we used
an if-elif statement?

www.umbc.edu

Strategy 3: Sequential Processing
• This process is pretty repetitive

–Which means we could use a loop!

• We would repeat the following steps:
1. Prompt the user for a number
2. Compare it to the current maximum
3. If it is larger, update the max value

– Repeat until the user is done entering numbers

• Or combine it with a list of given numbers

27

www.umbc.edu

Strategy 4: Take Advantage of Python

28

• Python has a built-in function called max

– It takes in numbers and returns the max value

def main():

getting input goes here

maximum = max(x1, x2, x3)

print("The largest value is ", maximum)

main()

– This is why we called our variable “maximum”
instead of max – because max is already defined!

www.umbc.edu29

Modularity

www.umbc.edu

Modularity

• A program being modular means that it is:

• Made up of individual pieces (modules)

– That can be changed or replaced

– Without affecting the rest of the system

• So if we replace or change one function, the
rest should still work, even after the change

30

www.umbc.edu

Modularity

• With modularity, you can also reuse
and repurpose your code

• What are some pieces of code you’ve
had to write multiple times?

– Getting input between some min and max

– Using a sentinel loop to create a list

– What else?

31

www.umbc.edu

Functions and Program Structure

• So far, functions have been used as a
mechanism for reducing code duplication

• Another reason to use functions is to make
your programs more modular

• As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs

32

www.umbc.edu

Functions and Program Structure

• One option to handle this complexity is to
break it down into smaller pieces

• Each piece makes sense on their own

• You can easily combine them together to form
the complete program

www.umbc.edu34

Program Design Example

www.umbc.edu

Vending Machine

• We want to write a program that simulates a
vending machine

• How do we even start!?

• With questions:

– What things do we want our
program to be able to do?

– What info does it need?

– How will we store data?
35 Image from wikimedia.org

www.umbc.edu

Announcements

• Homework 5 is/was due Wednesday

• Homework 6 does not come out this week

– It will come out the night of October 20th

• The midterm exam is when?

– During class on October 19th and 20th!

• Review packets will be available
in class on October 17th and 18th

36

